Reg. No.:

Fourth Semester B.Tech. Degree Examination, June 2016 (2013 Scheme)

13.401 : ENGINEERING MATHEMATICS - III (E)

Time: 3 Hours Max. Marks: 100

PART-A

Answer all questions. Each question carries 4 marks.

- 1. Define analyticity of a function at a point. Show that $f(z) = z\overline{z} 2i$ is not analytic at z = 0.
- 2. Use Cauchy's integral formula to evaluate $\int_C \frac{z+2}{2z^2-z} dz$ where C is the circle $|z| = \frac{1}{4}$.
- 3. Expand the function $f(z) = \frac{1}{z(z-2)}$ as a series about z=0 in the region 1
- 4. Explain the terms:
 - i) objective function ii) feasible solution
 - iii) basic feasible solution iv) optimal solution of an LPP.
- 5. Find the angle between the vectors u = (1, 3, -5) and v = (2, -3, 4) in \mathbb{R}^3 .

PART-B

Answer one full question from each Module. Each question carries 20 marks.

Module - 1

6. a) Test the differentiability of the function f(z) at z = 0 if

$$f(z) = \begin{cases} \frac{xy^2}{x^2 + y^2}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$

- Test if v = e^x (x sin y + y cos y) is harmonic. If so, find the analytic function
 f (z) = u + iv.
- c) Sketch the image of the region $-\frac{\pi}{4} < y < \frac{\pi}{4}$ under the map $w = e^z$.
- 7. a) Show that the function $f(z) = \sin 3z$ is analytic everywhere.
 - b) If $u = \sin x \cosh y$, show that u is a harmonic function.
 - c) Find a bilinear transformation which maps the points -1, 0, 1 onto 0, 1, -1 respectively. Find the image of z = i under this transformation.

Module - 2

- 8. a) Evaluate $\int_0^3 (x^2 + \overline{z}) dz$ along Y axis from 0 to 2i and then from 2i to 3 along the line 2x + 3y = 6.
 - b) Evaluate $\oint_C \frac{ze^z}{(2z-1)^2(3z-2)}$ dz where C is the unit circle |z| = 1.
 - c) Expand $f(z) = \sin z$ in Taylor's series about $z = \frac{\pi}{4}$.
- 9. a) Expand $f(z) = \frac{z-1}{z^2 + 2z}$ as a Taylor series about z = -1.
 - b) Find the residue of $f(z) = \frac{z^2}{(2z-1)^2(z+3)^2}$ at $z = \frac{1}{2}$.
 - c) Evaluate $\int_{0}^{\pi} \frac{d\theta}{5 + \cos \theta}$ using contour integration.

Module - 3

10. a) Solve the LPP:

Maximize
$$z = 5x_1 + 8x_2$$

Subject to

$$3x_{1} + 2x_{2} \ge 3$$

$$x_{1} + 4x_{2} \ge 4$$

$$x_{1} + x_{2} \le 5$$

$$x_{1}, x_{2} \ge 0$$

b) Use Big-M method to solve the LPP:

Minimize
$$z = 9x_1 + 10x_2$$

Subject to

$$x_1 + 2x_2 \ge 25$$

$$4x_1 + 3x_2 \ge 24$$

$$3x_1 + 2x_2 \ge 60$$

$$x_1, x_2 \ge 0$$

11. a) Solve the LPP:

Maximize
$$z = 2x_1 + x_2$$

Subject to

$$4x_1 + 3x_2 \le 12$$

 $4x_1 + x_2 \le 8$
 $4x_1 - x_2 \le 8$
 $x_1, x_2 \ge 0$

b) Solve the LPP, by Big-M method Minimize $z = 4x_1 + x_2$

Subject to

$$3x_1 + x_2 = 3$$

 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 4$
 $x_1, x_2 \ge 0$

Module - 4

- a) Show that the span of three vectors v₁, v₂, v₃ in a vector space V is a subspace of V.
 - b) Write $w_1 = (-1, -3, 0)$ as a linear combination of $w_2 = (1, -1, 2)$ and $w_3 = (2, 0, 3)$. Can $\{w_1, w_2, w_3\}$ be a basis for \mathbb{R}^3 ? Justify your answer.
 - c) Show that the vectors (1, -1, 2), (2, 0, 3), (-4, -2, 3), (-1, -3, 0) spans \mathbb{R}^3 ; but it is not a basis for \mathbb{R}^3 .
- 13. a) Define the null space of a linear transformation. Show that the null space of T: V → W, where V and W are vector spaces, is a subspace of V.
 - b) Find the null space and nullity of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x y, 0, x + y).
 - c) Find an orthonormal basis for \mathbb{R}^3 from (1, 0, 1), (1, 0, 0) and (2, 1, 0).